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A cascade model is described based on multiplier distributions determined from three-dimensional �3D�
direct numerical simulations �DNS� of turbulent particle laden flows, which include two-way coupling between
the phases at global mass loadings equal to unity. The governing Eulerian equations are solved using psue-
dospectral methods on up to 5123 computional grid points. DNS results for particle concentration and enstro-
phy at Taylor microscale Reynolds numbers in the range 34–170 were used to directly determine multiplier
distributions on spatial scales three times the Kolmogorov length scale. The multiplier probability distribution
functions �PDFs� are well characterized by the � distribution function. The width of the PDFs, which is a
measure of intermittency, decreases with increasing mass loading within the local region where the multipliers
are measured. The functional form of this dependence is not sensitive to Reynolds numbers in the range
considered. A partition correlation probability is included in the cascade model to account for the observed
spatial anticorrelation between particle concentration and enstrophy. Joint probability distribution functions of
concentration and enstrophy generated using the cascade model are shown to be in excellent agreement with
those derived directly from our 3D simulations. Probabilities predicted by the cascade model are presented at
Reynolds numbers well beyond what is achievable by direct simulation. These results clearly indicate that
particle mass loading significantly reduces the probabilities of high particle concentration and enstrophy rela-
tive to those resulting from unloaded runs. Particle mass density appears to reach a limit at around 100 times
the gas density. This approach has promise for significant computational savings in certain applications.
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I. INTRODUCTION

The study of turbulent flows incorporating heavy particles
in suspension �particles with finite stopping times� is an im-
portant endeavor that has both fundamental and practical rel-
evance to many scientific and engineering problems. Such
flows have been investigated mainly in numerical simula-
tions where detailed statistical analysis of the flow fields is
possible �1–4�. These simulations, limited to relatively low
Taylor microscale Reynolds numbers Re� ��40�, demon-
strated that particles whose fluid response times are compa-
rable to the lifetime of the smallest turbulent eddies produce
a highly nonuniform field with intense regions of concentra-
tion. Preliminary indications were that the feedback from
such concentrations of particles could locally damp
turbulence—however, the role of this “mass loading” effect
in determining the statistical distributions of particle density
and various fluid scalars has not been thoroughly studied.
Experimental investigations of turbulence modification by
particles have demonstrated that the degree of turbulence
damping increases with particle mass loading and concentra-
tion �4�.

The phenomenon known as intermittency can be de-
scribed as intense fluctuations, on small spatial and temporal
scales in the turbulent field, that contribute to the exponential

tails of probability distribution functions �PDFs� of scalars
such as velocity increments and gradients �5–7�, dissipation
�8�, pressure �9,10�, enstrophy �11,12�, and velocity circula-
tion �13�. Intermittency in the density field of preferentially
concentrated particles has also been observed and studied
�14,15�.

Although intermittency in turbulence still lacks a com-
plete theoretical understanding, progress has been made with
phenomenological models that capture intermittency in a
cascade process. Richardson �16� and later Kolmogorov �17�
suggested that such models might be used to explain the
process of eddy fragmentation initiated by unstable large
scale structures in a turbulent fluid. Intermittency in the con-
text of fragmentation though a cascading process has been
studied for large-scale gravitating masses �18� and velocity
increments in turbulence �19�. Simple cascade models were
explored by Meneveau and Sreenivasan �20� and were re-
viewed by Sreenivasan and Stolovitzky �21�. The scale simi-
larity of random fields was explored by Novikov �22,23�,
with a focus on the energy dissipation cascade. In Novikov’s
work, the ratio of dissipation averaged over two spheres, one
embedded within the other, served as a measure of enstrophy
partitioning between larger and smaller scales. The probabil-
ity distribution of these ratios, known as multipliers or break-
down coefficients, was shown to relate to multifractal and
statistical measures �moments� of the velocity and dissipa-
tion fields. A recent review of intermittency in multiplicative
cascades stresses that this theory is a kinematic description
and its connection with the real dynamics remains unclear
�24�.
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Our previous numerical study of particle concentration in
turbulent flows showed that the particle density field is a
multifractal on scales comparable to the Kolmogorov length
scale �14�. This result suggests that a deeper description of
the statistical properties of the particle concentration field,
based on multiplier PDFs, may also be possible. Analytical
efforts have suggested that dissipation and vorticity in the
fluid phase should be locally linked with particle concentra-
tion �25�. Numerical work in this regard has demonstrated
that preferential concentration is statistically anticorrelated
with low vorticity: Particles tend to concentrate in regions
where enstrophy is relatively weak �26,27�.

In this paper we present a cascade model in the spirit of
Novikov �22,23� that follows the partitioning of positive
definite scalars associated with both the fluid and the par-
ticles. Multipliers controlling the partitioning of enstrophy
and particle density at each step in the cascade are drawn
from probability distribution functions �PDFs� which are de-
termined empirically from direct numerical simulations
�DNS�. Moreover, the multiplier PDFs are dependent on, or

conditioned by, the particle mass density or mass loading.
The cascade model then generates joint PDFs for particle
concentration and enstrophy at arbitrary cascade levels. A
partitioning correlation probability is also applied at each
cascade level to account for the observed spatial anticorrela-
tion between enstrophy and particle concentration �26,28�.

In Sec. II we describe the cascade model and its param-
eters, which are empirically determined from DNS calcula-
tions. Details of the DNS equations, and our numerical meth-
ods, are discussed in the Appendix. Results are shown in Sec.
III, including comparisons of joint PDFs of enstrophy and
particle concentration as predicted by the cascade model
with those obtained directly from the DNS results. Cascade
model PDF predictions at Reynolds numbers well beyond
the DNS values are also presented. In Sec. IV, we summarize
our results and discuss their implications.

II. CASCADE MODEL

A turbulent cascade can be envisioned as an hierarchical
breakdown of larger eddies into smaller ones that halts when
the fluid viscosity alone can dissipate eddy kinetic energy.
Eddies or similar turbulent structures such as vortex tubes
are bundles of energy containing vorticity and dissipation.
These structures start with a size comparable to the integral
scale � of the flow, and break down in steps to a size com-
parable to the Kolmogorov scale � before being dissipated
away by viscosity. The fluid vorticity and dissipation exhibit
spatial fluctuations that increase in intensity as the spatial
scale decreases. This phenomenon is known as intermittency
and has been observed in a variety of processes with strong
nonlinear interactions.

In previous numerical and experimental studies, locally
averaged intermittent dissipation fields with scale at or near
� were used to quantify the statistical properties of multiplier
distributions �21�. Multipliers are random variables that gov-
ern the partitioning of a positive definite scalar as turbulent
structures break down along the cascade. In these studies the
statistical distribution of multipliers �their PDF� were shown
to be invariant over spatial scales that fall within the turbu-

TABLE I. Case parameters for DNS runs. The quantities D and
�p are defined in the Appendix . Other quantities above are defined
in Sec. II.

Parameter Case I Case II Case III Case IV

Nodes/side 64 128 256 512

� 0.01 0.003 0.0007 0.0002

Re� 34 60 104 170

q 1.5 0.65 0.28 0.14
�
�

23 22.8 22.4 23

kmax� 1.4 1.5 1.45 1.56
�

�
14.1 23.3 45.8 86.2

� 0.31 0.29 0.27 0.32

D 0.0001 0.00003 0.000007 0.000002

�p 0.001 0.0003 0.00007 0.00002

mC mC *C

1−Γ = .7

Γ = .3

)*C

S
C

S
C

mS *S
mC *C (1− )*CmC

mS
(1− )*S

mS
(1− )*SmS *S

(1−

FIG. 1. Figure depicting the breakdown of a parcel of enstrophy
�S� and particle concentration �C� into two parcels each with half
the volume of the parent. The corresponding multipliers mS and mC

are assumed to be greater than 0.5 in this figure. These measures are
broken down and distributed between the two parcels in one of two
ways: The larger portions are partitioned together with probability
�=0.3 �upper figure�, or in opposite directions with probability 1
−�=0.7 �lower figure�.
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lent inertial range. Multifractal properties of the cascading
field are derivable from such multiplier distributions �23�,
and cascade models based on the iterative application of
multipliers to a cascading variable have been shown to
mimic intermittency.

While invariant with level in the inertial range of a cas-
cade, multiplier PDFs might depend on local properties of
the environment. For instance, Sreenivasan and Stolovitzky
�21� showed that the degree of intermittency in dissipation
increases with the degree of local strain rate, and constructed
multiplier distributions for local energy dissipation condi-
tioned on the local strain rate. The physical mechanism be-
hind this effect is believed to be related to vortex stretching
dynamics creating intense bursts of dissipation.

All the multiplier PDFs measured by Sreenivasan and
Stolovitzky �21�, whether conditioned or unconditioned by
local properties, are well characterized by the � distribution
function,

p�m� =
��2��
����2 m�−1�1 − m��−1, �1�

where m is the multiplier variable and � is a shape control-
ling parameter. A large � produces a narrow, delta-function-
like curve centered at m=0.5, whereas �=1 produces a flat
distribution between m=0 and 1. These limits for � corre-
spond to uniform and highly intermittent processes respec-

tively. In conditioned multipliers, the value of � varies with
some local property of the fluid.

Concentration of particles in turbulence is a result of the
active dynamics of eddies on all scales. The process depends
on the scale of the eddies and the corresponding particle
response to those eddies. Intense particle density fluctua-
tions, akin to intermittency, were observed in a previous nu-
merical study where it was also shown that nonuniform par-
ticle concentrations have multifractal scaling properties �14�.
These results strongly suggest that a phenomenological cas-
cade model based on multipliers may adequately describe the
particle density field. Simulations that have included particle
feedback on the fluid through the mass loading effect show
that damping of local turbulence occurs �2,29�. The latter
have shown that vorticity dynamics is affected locally by
particle feedback. This interplay between the phases could
attenuate vortex stretching and, thereby, diminish local tur-
bulent intermittency. Multiplier distributions conditioned on
local mass loading should therefore be an integral part of a
realistic fluid-particle cascade model.

A. Two-phase cascade model

Below we describe a two-phase cascade model that incor-
porates simultaneous multiplier processes for particle con-
centration C and fluid enstrophy S, in addition to a process
that models their spatial anticorrelation. The multiplier dis-
tributions are conditioned by the local particle concentration,
as determined empirically from DNS fields equilibrated to
Re�=34, 60, 107, and 170. The spatial anticorrelation was
also quantified from these fields. Local measures of particle
concentration �C� and enstrophy �S� used are defined in the
Appendix.

FIG. 2. Empirically determined conditional multiplier distribu-
tions p�m �C� for particle concentration at three different mass load-
ing values: C=1, 20, and 50. The distributions are obtained from
bifurcations of cells with a spatial scale equal to 3�. Results at
Re�=34 �square�, 60 �triangle�, 107 �circle�, and 170 �cross� are
overlain. Only the simulation with Re�=170 provided results for
C=50. At each mass loading the p�m� at all Reynolds numbers are
very well approximated with the � distribution function �solid line�.
The distribution widths narrow as the mass loading increases, indi-
cating a decrease in the intermittency.

FIG. 3. The � parameters as functions of local mass loading C
for enstrophy and particle concentration at 3�. Results for all DNS
cases are indicated as described in Fig. 2. A least squares fit of an
exponential function to the points over the entire mass loading
range is shown �solid line�. Dashed lines correspond to the upper
and lower limits of the function, and are derived using the 2	 errors
of p2 and p3.
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A schematic illustration of our two-phase partitioning pro-
cess is shown in Fig. 1. The cascading vector �S ,C� has
components representing enstrophy and particle concentra-
tion. Initially the components are assigned the value unity
and are associated with a common cell having a volume of
unity. Each component is partitioned into two parts;
�mSS , �1−mS�S� and �mCC , �1−mC�C�, respectively, where
mS, mC are multipliers for S and C whose values are between
zero and one inclusive and are random members of the cor-
responding multiplier distributions. The parts are associated
with two daughter cells each containing half the volume of
the starting cell. In the example shown in Fig. 1, mS and mC
are assumed to be greater than 0.5. The largest parts of S and
C are placed in the same daughter cell with probability �
�and in different cells with probability 1−��. This partition-
ing process is repeated for each daughter cell down the cas-
cade until the ratio of the daughter cell size to the initial cell
size equals a specified cutoff. When this cutoff is set to the
ratio of the turbulent length scales � and �, the cascade
corresponds to turbulence characterized by Re���� /��2/3

�30�.

B. Conditioned multipliers

The parameters of the cascade model are empirically de-
rived from the particle density and enstrophy fields C and S
as calculated by DNS �see Appendix�. The simulation param-
eters for four DNS runs representing Re�=36, 60, 104, and
170 are shown in Table I. The turbulence kinetic energy q,
the volume averaged dissipation �, and � are calculated from
the three-dimensional �3D� turbulent energy spectrum E�k�
and kinematic viscosity �,

q = �
0




E�k�dk , �2�

� = 2��
0




E�k�k2dk , �3�

� =
3�

4q
�

0


 E�k�
k

dk , �4�

where k is wave number. kmax=�2/3 times the number of
computational nodes per side is the maximum effective
wavenumber. Thus kmax��1 indicates an adequate resolu-
tion of the Kolmogorov scale.

The 3D DNS computational box is uniformly subdivided
into spatial cells 3� on a side, and the average value of C
and S is determined for each cell �see the Appendix�. The
cells are divided into groups associated with disjoint ranges
of C. Each cell is then divided into two parts of equal volume
and averages for C and S are determined for each part. The C
and S multipliers for each cell are evaluated as the ratio of
these averages to the averages in the parent cell. A condi-
tional multiplier distribution p�m� is then determined for
each binned value of C from the corresponding set of cell
multipliers. Plots of p�m� for three values of C are shown in
Fig. 2. The points represent distributions derived from all
DNS runs and the solid lines are least squares fits to the �
distribution function �Eq. �1��. For the lower values of C,
Re� independence is apparent; only the Re�=170 case pro-
vided data for the largest C range. The plots clearly indicate
that the intermittency in C is reduced �multiplier PDFs nar-
row� as C is increased. Derived values of �C�C� and �S�C�
are shown as a function of C in Fig. 3. Least squares fits to
the functional form p1exp�p2Cp3� are drawn as solid lines
and the best fit parameter values for this function are tabu-
lated in Table II. Bounding curves �dashed lines� are defined
by setting p2 and p3 to their 2	 limits, to establish a plausible
range of uncertainty in the predictions.

FIG. 4. Comparisons of cascade model pre-
dictions of P�S ,C�SC with DNS results at Re�

= �a� 34, �b� 60, �c� 107, and �d� 170. Contours
indicate probabilities 0.001, 0.01, 0.1 and 0.3.
Dashed contours are cascade model predictions
and solid ones are DNS results.

TABLE II. � model parameters.

Scalar p1 p2 p3

C 2.7 0.045 1.02

S 9 0.03 1.06
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It is certainly of interest that such large solid-gas mass
loadings as C=100 appear in the DNS runs at all, given
published reports that particle mass loading significantly
dampens turbulent intensity even for mass loadings on the
order of unity �1,4�. These diverse results might be recon-
ciled since the particles we study herein are all far smaller
than the Kolmogorov scale and also have only a very small
lag velocity relative to the gas. Recall that we force the tur-
bulence, as might be the case if it were being constantly
forced by energetic sources operating on larger scales than
our computational volume. However, Fig. 3 strongly sug-
gests an upper limit for C ��100� for both �S and �C.

The cascade anticorrelation parameter � was determined
by counting the number of parent cells within which the
larger partitions of C and S were found to share the same
daughter cell. This number divided by the total number of
parent cells defines �. The derived � value is approximately
constant across the DNS cases, as indicated in Table I. Op-
erationally, the � used in the cascade model was determined
by taking a simple average of the � values in Table I.

Overall, the invariance of � and the �C�C� and �S�C�
functions across our range of Re� justifies their treatment as
level independent parameters in the two-phase cascade
model. One caveat remains, which would be of interest to
address in future work. While it has been shown that multi-
plier distributions leading to �C and �S are level-invariant
over a range of scales within an inertial range �21�, our simu-
lations were numerically restricted to values of Re in which
the inertial range has not yet become fully developed. Our
reliance on the smallest available scales of 3� to 1.5� �those
providing the largest available intermittency� might lead to
some concern that they were already sampling the dissipa-
tion range of our calculations, and thus may not be appropri-
ate for a cascade code. We tested this possibility by calculat-
ing multipliers for the next largest level bifurcation �6� to
3�� for the Re�=170 case. The � values for those multiplier
distributions are slightly larger in value, but consistent with
the C dependence shown in Fig. 2 �6� scales do not provide
good distribution functions beyond C�15�. Thus we believe
that for the purpose of demonstrating this technique, and for
the purpose of estimating the occurrence statistics of C under
particle mass loading, our results are satisfactory.

III. MODEL RESULTS

The 2D joint probability distribution function or PDF of
concentration and enstrophy, a fractional volume measure,
was generated from the cascade model and compared with
results derived directly from numerical DNS simulations.
The basic probability density P�S ,C� gives the fractional
volume occupied by cells having enstrophy S and concentra-
tion C, per unit S and C; thus the fractional volume having C
and S in some range 
S ,
C is P�S ,C�
S
C. For quantities
varying over orders of magnitude, it is convenient to adopt

S=S and 
C=C, and we will present the results in the form
P�S ,C�SC.

We started by binning results at spatial scale 3�, obtained
from the semifinal level of a cascade model run, into a uni-
form logarithmic grid of S ,C bins each having width


�log S�=
�log C�=�, with corresponding values of 
S and

C. The number of 3� cells accumulated in each bin was
normalized by the total number of such cells in the sample to
convert it to a fractional volume 
V�S ,C�= P�S ,C�
S
C.
Then


V�S,C�
�2 =

P�S,C�
S
C


�log S�
�log C�
→ P�S,C�SC as � → 0.

�5�

In practice of course, the binning ranges � are not vanish-
ingly small.

The plots in Figs. 4, 5, and 7 then show the PDF as the
volume fraction P�S ,C�SC. Cascade levels 9, 12, 15, and 18
correspond approximately to the Re� of the four simulation
cases shown in Table I. These levels were determined from
the ratio of � and � for each case: level � 3 log2�� /��. The
factor 3 accounts for cascade bifurcations of 3D cells, be-
cause it takes three partitionings, along three orthogonal
planes, to generate eight subvolumes of linear dimension
one-half that of the parent volume. That is, 2level is equal to
the number of � cells within a 3D volume having linear

FIG. 5. �a� Cascade model predictions for a 24 level case, taken
to lower probability levels, using 256 realizations of the cascade.
Contours are labeled by log�P�S ,C�SC�. Note the crowding of con-
tours at high-C values, indicating the high-C limit of the process
under conditions of mass loading. �b� A control cascade to level 24,
as in Fig. 5�a�, with conditioning turned off. The difference between
�a� and �b� clearly shows the “choking” effects of particle mass
loading on intermittency in C.
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dimension � and �2level/3�2/3 is the corresponding Re�. The
number of cascade realizations is, in turn, equal to the prod-
uct of the number of �-size volumes in the computational
box and the number of simulation snapshots processed. In
general it is difficult to generate DNS results with a ratio of
� and � that is an exact power of 2. In order to correctly
compare DNS simulations with the cascade model it was
necessary to interpolate between two cascade generated
P�S ,C�SC computed at scale ratios �levels� that bracketed
the ratios that were actually simulated. In Fig. 4 we compare
isoprobability contours of P�S ,C�SC predicted by cascade
models representing the four DNS cases with the same con-
tours derived directly from the simulated S and C fields. The
agreement is very good.

A. Predictions at higher Reynolds number

The cascade model was used to generate PDFs at deeper
levels in order to assess the effect of mass loading on the
probabilities of high C and S. We generated 256 realizations
of a level 24 cascade, 20 realizations of a level 30 cascade,
and one realization of a level 36 cascade.

Figure 5�a� shows the average of 256 realizations of a 24
level cascade, taken to lower probability values. The pro-
nounced crowding of the contours at the top of the figure
indicates the effect of particle mass loading on reducing the
intermittency of C at high values of C. For comparison, Fig.
5�b� shows a control run of a 24 level cascade with all con-
ditioning turned off. In this control case, the exponential tails
characterizing intermittent fluctuations are seen at both low
and high C.

In order to evaluate the effect of the uncertainties in the
extrapolations of the � curves for C and S on the PDF, two
cascade runs to level 24 were generated using the parameters
for the upper and lower dotted curves in Fig. 3. In Fig. 6 we
show cross sections of the PDFs produced by these runs
along the C axis through the distribution modes to compare
with the same cross section for a run using the nominal pa-
rameters in Table II. Both models diverge from the mean
model beyond C�40, with the upper �lower� curve corre-

sponding to the outside �inside� �C�C� and �S�C� bounds in
Fig. 3. Figure 6 indicates that the sensitivity of the PDF to
the � model parameters at the 2	 level is only apparent at
large C, and all models show a sharp dropoff in the probabil-
ity for C� 100.

A crowding effect similar to the one seen in Fig. 5�a� is
shown in Fig. 7 for isoprobability contours equal to 5
�10−4, for cascade levels 6, 12, 18, 24, 30, and 36.

Figures 8�a� and 8�b� compare 1D cuts through the modes
of the PDFs for cascades of 18–36 levels, indicating that
going to deeper levels �higher Re�� results in larger intermit-
tency at the low-C end �as expected�, retaining the exponen-
tial tail characteristic of intermittent processes, but the high-
est particle concentration end of the distribution is extended
more slowly. Certainly at the order of magnitude level, a
particle mass loading ratio of 100 times the gas density ap-
pears to be as high as preferential concentration can produce.
This result could be inferred directly from inspection of the
conditioned � distributions of Fig. 3.

FIG. 6. 1D cuts through the mode of the PDF
of Fig. 5�a� parallel to the C axis, showing the
effects of uncertainty in the conditioning curve
�C�C�. The solid curve is the nominal model and
the dashed curves are obtained by allowing the
parameters p2 and p3 to take their 2	 extreme
values.

FIG. 7. Cascade model predictions for P�S ,C�SC=5�10−4 for
levels 6, 12, 18, 24, 30, and 36. Contour labels indicate the cascade
levels.
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IV. SUMMARY

A two-phase cascade model for enstrophy and particle
concentration in 3D, isotropic, fully developed turbulence
with particle loading feedback has been developed and
tested. Multiplier distributions for enstrophy and particle
concentration were empirically determined from direct nu-
merical simulation fields at Taylor scale Reynolds numbers
between 34 and 170. These simulations included “two-way”
coupling between the phases at global particle-gas mass
loadings equal to unity. The shape of all multiplier distribu-
tions is well characterized by the � distribution function,
with a value of � that depends systematically on the local
degree of mass loading. The values of � increase monotoni-
cally with mass loading and begin to rapidly increase at mass
loadings greater than 100.

The C-dependent multiplier distributions were used as in-
put to a cascade model that simulates the breakdown, or
cascade, of enstrophy S and particle concentration C from
large to small spatial scales. The spatial anticorrelation be-
tween enstrophy and particle concentration was empirically
determined from 3D DNS models and shown to be constant

with Re�. This constant was used as a correlation probability
governing the relative spatial distribution of S and C at each
bifurcation step in the cascade model.

The cascade model we have developed clearly reproduces
the statistical distributions and spatial correlations observed
in our DNS calculations. The cascade parameter values we
have derived appear to be universal within the range of Re�

of our simulations. We thus speculate that they can be used
to predict approximate joint probabilities of enstrophy and
particle concentration at higher Reynolds numbers, at great
savings in computer time. For example, a typical DNS run to
Re�=170 takes about 170 cpu hours on an Origins 3000 ma-
chine, while a cascade model to an equivalent level takes
0.1 cpu hours.

We have presented joint probabilities of S and C derived
from cascade runs up to level 36. The contours shown in Fig.
5�a� and Fig. 6 clearly show the effects of particle mass
loading on the probability distribution functions of C in the
regimes where C is large. It appears that particle mass load-
ings greater than 100 are rare in turbulent flows.

The properties of the cascade rest on the physics of our
DNS simulations, and we speculate that two separate effects

FIG. 8. �a� 1D global cuts through the cascade
model PDFs P�S ,C�SC for runs with 18, 24, 30,
and 36 levels. �b� Closeup of 1D cuts through
high-C regime.
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are involved. First, particle mass loading dampens fluid mo-
tions of all types, decreasing vorticity stretching and all other
forms of ongoing eddy bifurcation which are needed to pro-
duce intermittency. Second, as a byproduct of this, particle
mass loading may alter the Kolmogorov timescale locally
and shift the most effectively concentrated particle Stokes
number St to a larger value than that characterizing particles
already lying in the local volume, reducing the probability of
preferentially concentrating the local particles any further.

As described in Sec. II, our multiplier distributions were
taken from the most numerous cells, with the largest inter-
mittency, which are at the smallest scales possible �furthest
from the forcing scale�. At Reynolds numbers accessible to
DNS, a true inertial range is only beginning to appear and,
while sampling at the smallest spatial scales possible, we are
as closely approaching the asymptotic values within the true
inertial range as possible, where level independence has been
demonstrated in the past �21�, it is possible that our values
are subject to inaccuracy by virtue of being sampled too
close to the dissipation scale. Any such inaccuracy will affect
our cascade results quantitatively but not qualitatively. As
computer power increases, it would be a sensible thing to
continue experiments like these at higher Re�.

A more general model that treats enstrophy and strain as
independent cascading scalars might allow for a higher-
fidelity particle concentration cascade, since C is known to
be linked to the difference between these two scalars �25�
�the so-called second invariant tensor II�. However, such an
effort would introduce further complexity of its own, as II is
no longer positive definite. We consider the development of
such a model a suitable task for future work.
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APPENDIX

We used an Eulerian scheme developed by Dr. Alan Wray
to solve the coupled set of fluid-particle equations used in
this study. This was done to maximize the computational
efficiency of the calculations and, more importantly, to accu-
rately evaluate multipliers over the wide range of particle
concentrations and enstrophies expected. In this study the
effects of particle collisions and external forces on the par-
ticles �e.g., gravity� are not considered. The turbulence is
spectrally forced at k=�14 such that moments of the Fourier
coefficients of the force satisfy isotropy up to the fourth or-

der. The instantaneous Navier-Stokes equations describing
the conservation of mass and momentum for an incompress-
ible fluid are

� · U = 0, �A1�

�U

�t
+ �U · ��U = −

�P

� f
+ ��2U − �

�p

� f
�U − V� , �A2�

where U is fluid velocity, V is particle velocity, � f and �p are
the fluid and particle mass densities, � is fluid viscosity, P is
pressure, and � is the inverse of the particle gas drag stop-
ping time �p.

The compressible equations for the particles are

��p

�t
+ ���pV� = D�2�p, �A3�

���pV�
�t

+ ���pV · V� = �p�2��pV� + ��p�U − V� ,

�A4�

where �p is a “particle viscosity” and D is a “particle diffu-
sivity.” The particle diffusivity and viscosity terms numeri-
cally smooth out particle mass and momentum, alleviating
the formation of steep gradients of �p that can lead to nu-
merical instabilities, e.g. �31�.

The right-hand sides of Eqs. �A2� and �A4� contain phase
coupling terms which are linearly dependent on �U−V�. The
linear form of the coupling follows from the assumptions
that the particle size is much less than �, and that the mate-
rial density of the particles is much greater than � f �2�. Ad-
ditional contributions to the particle-gas couplings involving
pressure, viscous and Basset forces �29� have not been added
since they are expected to be weak in our size regime of
interest. The particle field is introduced with a constant mass
density and an initial velocity given by the local gas velocity
in a field of statistically stationary turbulence. All runs are
continued until the particle statistics �rms of concentration
distribution� have equilibrated.

The particle Stokes number St is defined relative to the
Kolmogorov time scale �� as St=�p /��, and �=Mp /Mf is
the global mass loading, where Mp and Mf are the total mass
of particles and fluid respectively. In this study � f, St, and �
are set to unity, D /�=0.01, and �p /�=0.1. Explicitly setting
St=1 guarantees that the particles are preferentially concen-
trated. When � is unity, �p is a surrogate for the local mass
loading or local concentration factor C. The values of �p and
D minimize the diluting effects of numerical particle diffu-
sion while preventing numerical blowups; their values were
determined from a set of DNS runs in which their values
were decreased systematically until numerical instabilities
set in.

Equations �A1�–�A4� are solved using psuedospectral
methods commonly used to solve Naviers-Stokes equations
for a turbulent fluid. The fast Fourier transform algorithm is
used to efficiently evaluate the dynamical variables U, V,
and �p on a 3D uniform grid of computional nodes with
periodic boundary conditions. The computational algorithm
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is parallelized using MPI and is written in Fortran 90. All
runs for this study were executed on SGI Origins supercom-
puters with up to 1024 processors.

Enstrophy is defined as

S =
1

2	
ij

��iU j − � jUi�2, �A5�

where i , j are summed over the three coordinate dimensions
of U.

The local spatial average of a scalar over a sample volume
is estimated as

1

n dv	
i

n

Fidv , �A6�

where Fi is the scalar’s value on computational node i cen-
tered within a cube of volume dv and the sum is over all n
nodes covering the sample volume. We normalized this av-
erage by the global average value to get a quantity that mea-
sures the scalar’s local value relative to its mean. In this
paper C and S will denote normalized spatial averages of
particle concentration and enstrophy over cubes 3� on a side.

�1� K. D. Squires and J. K. Eaton, Phys. Fluids A 2, 1191 �1990�.
�2� K. D. Squires and J. K. Eaton, Tech. Rep. MD-55, Stanford

University, 1990 �unpublished�.
�3� K. D. Squires and J. K. Eaton, Phys. Fluids A 3, 1159 �1990�.
�4� J. D. Kulick, J. R. Fessler, and J. K. Eaton, J. Fluid Mech. 227,

109 �1994�.
�5� B. Castaing, Y. Gagne, and E. J. Hopfinger, Physica D 46, 177

�1990�.
�6� S. P. G. Dinavahi, K. S. Breuer, and L. Sirovich, Phys. Fluids

7, 1122 �1995�.
�7� P. Kailasnath, K. R. Sreenivasan, and G. Stolovitzky, Phys.

Rev. Lett. 68, 2766 �1992�.
�8� A. Vincent and M. Meneguzzi, J. Fluid Mech. 225, 1 �1991�.
�9� A. Pumir, Phys. Fluids 6, 2071 �1994�.

�10� E. Lamballais, M. Lesieur, and O. Métais, Phys. Rev. E 56,
6761 �1997�.

�11� J. Jiménez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, J.
Fluid Mech. 255, 65 �1993�.

�12� G. He, S. Chen, R. H. Kraichnan, R. Zhang, and Y. Zhou,
Phys. Rev. Lett. 81, 4636 �1998�.

�13� N. Cao, S. Chen, and K. R. Sreenivasan, Phys. Rev. Lett. 76,
616 �1996�.

�14� R. C. Hogan, J. N. Cuzzi, and A. R. Dobrovolskis, Phys. Rev.
E 60, 1674 �1999�.

�15� E. Balkovsky, G. Falkovich, and A. Fouxon, Phys. Rev. Lett.
86, 2790 �2001�.

�16� L. F. Richardson, Weather Prediction by Numerical Process
�Cambridge University Press, Cambridge, UK, 1922�.

�17� A. N. Komolgorov, J. Fluid Mech. 13, 82 �1962�.
�18� T. Chiueh, Chin. J. Phys. �Taipei� 32, 319 �1994�.
�19� M. Gorokhovski, Tech. Rep., Center for Turbulence Research,

Annual Research Briefs, 2003 �unpublished�.
�20� C. Meneveau and K. R. Sreenivasan, Phys. Rev. Lett. 59, 1424

�1987�.
�21� K. R. Sreenivasan and G. Stolovitzky, J. Fluid Mech. 379, 105

�1995�.
�22� E. A. Novikov, Phys. Fluids A 2, 814 �1990�.
�23� E. A. Novikov, Phys. Rev. E 50, R3303 �1994�.
�24� J. Jiménez, J. Fluid Mech. 409, 99 �2000�.
�25� M. R. Maxey, Phys. Fluids 30, 1915 �1987�.
�26� K. D. Squires and J. K. Eaton, J. Fluid Mech. 226, 1 �1991�.
�27� A. M. Ahmed and S. Elghobashi, Phys. Fluids 13, 3346

�2001�.
�28� J. K. Eaton and J. R. Fessler, Int. J. Multiphase Flow 20,

Suppl., 169 �1994�.
�29� S. Elghobashi and G. C. Truesdell, Phys. Fluids A 5, 1790

�1993�.
�30� U. Frisch, Turbulence �Cambridge University Press, Cam-

bridge, UK, 1995�, Chap. 8.
�31� A. Johansen, A. C. Anderson, and A. Brandenburg, Astron.

Astrophys. 417, 361 �2004�.

CASCADE MODEL FOR PARTICLE CONCENTRATION AND… PHYSICAL REVIEW E 75, 056305 �2007�

056305-9


